A Helical Structural Nucleus Is the Primary Elongating Unit of Insulin Amyloid Fibrils

نویسندگان

  • Bente Vestergaard
  • Minna Groenning
  • Manfred Roessle
  • Jette S Kastrup
  • Marco van de Weert
  • James M Flink
  • Sven Frokjaer
  • Michael Gajhede
  • Dmitri I Svergun
چکیده

Although amyloid fibrillation is generally believed to be a nucleation-dependent process, the nuclei are largely structurally uncharacterized. This is in part due to the inherent experimental challenge associated with structural descriptions of individual components in a dynamic multi-component equilibrium. There are indications that oligomeric aggregated precursors of fibrillation, and not mature fibrils, are the main cause of cytotoxicity in amyloid disease. This further emphasizes the importance of characterizing early fibrillation events. Here we present a kinetic x-ray solution scattering study of insulin fibrillation, revealing three major components: insulin monomers, mature fibrils, and an oligomeric species. Low-resolution three-dimensional structures are determined for the fibril repeating unit and for the oligomer, the latter being a helical unit composed of five to six insulin monomers. This helical oligomer is likely to be a structural nucleus, which accumulates above the supercritical concentration used in our experiments. The growth rate of the fibrils is proportional to the amount of the helical oligomer present in solution, suggesting that these oligomers elongate the fibrils. Hence, the structural nucleus and elongating unit in insulin amyloid fibrillation may be the same structural component above supercritical concentrations. A novel elongation pathway of insulin amyloid fibrils is proposed, based on the shape and size of the fibrillation precursor. The distinct helical oligomer described in this study defines a conceptually new basis of structure-based drug design against amyloid diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-amyloidogenic and disaggregating effects of Salvia officinalis in vitro: a strategy to reduce the insulin amyloid fibrils due to repeated subcutaneous injections in diabetic patients

Background: Recently, there has been growing efforts to elucidate the molecular mechanism of amyloid formation and investigating effective compounds for inhibiting of amyloid structures. Investigation of the fibrillation process through its induction and inhibition using specific compounds such as aromatic derivatives provide useful information for stabilizing the protein structure. In the pres...

متن کامل

Simulation of pH-dependent edge strand rearrangement in human β-2 microglobulin

Amyloidosis results from abnormal aggregation of native or proteolyzed proteins into amyloid fibrils [1] and is associated with an array of maladies, including Alzheimer’s Disease, Parkinson’s Disease, spongiform encephalopathies, type II diabetes and several forms of systemic amyloidosis [2, 3]. In each case, a protein or a proteolyzed fragment aggregates to form unbranched fibrils 10-20 nm wi...

متن کامل

Minocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation

Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...

متن کامل

Minocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation

Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...

متن کامل

The protofilament structure of insulin amyloid fibrils.

Under solution conditions where the native state is destabilized, the largely helical polypeptide hormone insulin readily aggregates to form amyloid fibrils with a characteristic cross-beta structure. However, there is a lack of information relating the 4.8 A beta-strand repeat to the higher order assembly of amyloid fibrils. We have used cryo-electron microscopy (EM), combining single particle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Biology

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2007